
CGS 2545: Database Concepts  (Chapter 4)              Page 1                © Dr. Mark Llewellyn 

CGS 2545: Database Concepts 

Spring 2012 

 
Chapter 4 – Logical Database Design And The 

Relational Data Model – Part 2 

Department of Electrical Engineering and Computer Science 

Computer Science Division 

University of Central Florida 

Instructor :  Dr. Mark Llewellyn 

        markl@cs.ucf.edu 

  HEC 236, 407-823-2790 

 http://www.cs.ucf.edu/courses/cgs2545/spr2012 



CGS 2545: Database Concepts  (Chapter 4)              Page 2                © Dr. Mark Llewellyn 

  • In general, the goal of a relational database design is to generate a set of 
relation schemas that create an accurate representation of the real-world 
situation that is being modeled. 

– The design must also allow information to be stored without unnecessary 
redundancy, yet also allow for that information to be retrieved efficiently.   

• A technique that can be used to identify this set of suitable relational schemas 
is called normalization. 

• The process of normalization builds a set of schemas, each of which is in an 
appropriate normal form. 

• Normalization is a bottom-up approach to database design that begins by 
examining the relationships between attributes. 

• To determine if a relation schema is in one of the desirable normal forms, 
additional information is required about the real-world scenario that is being 
modeled.  Most of this additional information is represented by a type of data 
dependency known as a functional dependency. 

Introduction To Normalization 



CGS 2545: Database Concepts  (Chapter 4)              Page 3                © Dr. Mark Llewellyn 

  
Introduction To Normalization 

• The process of normalization can be defined formally as: 

 

 

• The process of normalization was first developed in the early 1970s by E.F. Codd. 

• Normalization is most often performed as a series of tests on a relational schema to 

determine whether it satisfies or violates the requirements of a given normal form.   

• Codd initially proposed three normal forms called first (1NF), second (2NF), and third 

(3NF).  Subsequently, R. Boyce and Codd together introduced a stronger definition 

for third normal form called Boyce-Codd Normal Form (BCNF). 

• All four of these normal forms are based upon the concept of a functional dependency.  

Higher normal forms that go beyond BCNF, such as fourth (4NF) and fifth (5NF), as 

well as several others, have also subsequently been introduced.  These higher normal 

forms utilize other types of data dependencies and some of these apply to situations 

that are quite rare.  We will concentrate only on the first four normal forms and not 

examine any of the higher normal forms. 

Normalization: A technique for producing a set of relational schemas with 
desirable properties given the data requirements pertaining to the real-world 
situation that is being modeled. 



CGS 2545: Database Concepts  (Chapter 4)              Page 4                © Dr. Mark Llewellyn 

  
Relationship Between Normal Forms 

N1NF 

1NF 

2NF 

3NF 

BCNF 

4NF 

5NF 

Higher Normal Forms 



CGS 2545: Database Concepts  (Chapter 4)              Page 5                © Dr. Mark Llewellyn 

  
Introduction To Normalization 

• The process of normalization is a formal method that 

identifies relational schemas based upon their primary 

or candidate keys and the functional dependencies that 

exists amongst their attributes.  

• Normalization is primarily a tool to validate and 

improve a logical design so that it satisfies certain 

constraints that avoid unnecessary duplication of data. 

• Normalization is the process of decomposing relations 

with anomalies to produce smaller, well-structured 

relations. 



CGS 2545: Database Concepts  (Chapter 4)              Page 6                © Dr. Mark Llewellyn 

  
Introduction To Normalization 

• A well-structured relation contains minimal data 

redundancy and allows users to insert, delete, and 

update rows without causing data inconsistencies. 

• Goal is to avoid anomalies 

– Insertion Anomaly – adding new rows forces user to create 

duplicate data. 

– Deletion Anomaly – deleting rows may cause a loss of data 

that would be needed for other future rows. 

– Modification Anomaly – changing data in a row forces 

changes to other rows because of duplication. 



CGS 2545: Database Concepts  (Chapter 4)              Page 7                © Dr. Mark Llewellyn 

Example – Anomalies In A Relation 

Question – Is this a relation?  Answer – Yes: unique rows and no multivalued 

attributes 

Question – What’s the primary key?  Answer – Composite: Emp_ID, 

Course_Title 



CGS 2545: Database Concepts  (Chapter 4)              Page 8                © Dr. Mark Llewellyn 

Anomalies in this Table 

• Insertion – can’t enter a new employee without having the 

employee take a class. 

• Deletion – if we remove employee 140, we lose information about 

the existence of a Tax Acc class. 

• Modification – giving a salary increase to employee 100 forces us 

to update multiple records. 

Why do these anomalies exist?  

Because there are two themes (entity types) into one 

relation. This results in duplication, and an 

unnecessary dependency between the entities 

General rule of thumb: a table should not pertain to 

more than one entity type 



CGS 2545: Database Concepts  (Chapter 4)              Page 9                © Dr. Mark Llewellyn 

  • First Normal Form (1NF): All multi-valued attributes have 
been removed from the table.  Only a single value (possibly 
null) exists at the intersection of each row and column of the 
table. 

• Second Normal Form (2NF): All partial functional 
dependencies have been removed.  [Non-key attributes are 
identified by only the full primary key.] 

• Third Normal Form (3NF):  All transitive functional 
dependencies have been removed.  [Non-key attributes are 
identified by only the primary key.] 

• Boyce-Codd Normal Form (BCNF):  Any remaining anomalies 
that result from functional dependencies have been removed.  
[More than one primary key existed for the same non-key 
attributes.] 

Brief Overview Of The Steps in Normalization 



CGS 2545: Database Concepts  (Chapter 4)              Page 10                © Dr. Mark Llewellyn 

  
Brief Overview Of The Steps in Normalization 

Figure 5-22, page 212 



CGS 2545: Database Concepts  (Chapter 4)              Page 11                © Dr. Mark Llewellyn 

  
• The design of a relational database should have included a 

conceptual modeling step (producing an ER diagram) for the 
enterprise (as we have done). 

• This step was followed by a transformation process that 
converted the ER diagram into a set of relational tables. 

• The first step in the transformation process generated a table 
(relation) for every multi-valued attribute for a given entity. 

• This means that every table (relation) that was created was in 
fact a relation and thus is in 1NF. 

• In our earlier discussion of anomalies, the table was in 1NF but 
was not a well-structured table as it contained certain 
anomalies.  Normalization will remove these anomalies. 

Important Note 



CGS 2545: Database Concepts  (Chapter 4)              Page 12                © Dr. Mark Llewellyn 

  
• A functional dependency is a constraint between two attributes (or sets of 

attributes). 

– For any relation R, attribute B is functionally dependent on attribute A if, for every 
valid instance of A, that value of A uniquely determines the value of B. 

– The functional dependency of B on A is denoted as: A → B. 

• Example: 

EMP_COURSE (Emp_ID, Course_Title, Date_Completed) 

The relation instance shown on the right  

satisfies the functional dependency 

Emp_ID, Course_Title → Date_Completed 

Functional Dependencies 

Emp_ID Course_Title Date_Completed 

100 Excel 4/1/2006 

100 Access 5/20/2005 

140 Tax Acct. 3/14/2000 

110 Visual Basic 6/6/2006 

110 C++ 11/16/2004 

150 Excel 6/27/2003 

150 Access 8/12/2002 

determinant 

consequent 



CGS 2545: Database Concepts  (Chapter 4)              Page 13                © Dr. Mark Llewellyn 

  
A 1NF, But Not Well-structured, Table 



CGS 2545: Database Concepts  (Chapter 4)              Page 14                © Dr. Mark Llewellyn 

Anomalies in this Table 

• Insertion – if new product is ordered for order 1007 of 

existing customer, customer data must be re-entered, 

causing duplication. 

• Deletion – if we delete the Dining Table from Order 

1006, we lose information concerning this item's finish 

and price.  

• Update – changing the price of product ID 4 requires 

update in several records. 



CGS 2545: Database Concepts  (Chapter 4)              Page 15                © Dr. Mark Llewellyn 

Functional Dependencies in this Table 



CGS 2545: Database Concepts  (Chapter 4)              Page 16                © Dr. Mark Llewellyn 

Definition of 2NF 

• A relation is in 2NF if it is in 1NF and every non-key 
attribute is fully functionally dependent on the 
ENTIRE primary key. 

– Every non-key attribute must be defined by the entire 
key, not by only part of the key.  (A partial 
dependency exists whenever a non-key attribute is 
functionally dependent on only a portion of the 
primary key.) 

– No partial functional dependencies exist in a 2NF 
relation. 



CGS 2545: Database Concepts  (Chapter 4)              Page 17                © Dr. Mark Llewellyn 

Why INVOICE Table Is Not In 2NF 

Order_ID  Order_Date, Customer_ID, Customer_Name, Customer_Address 

Product_ID  Product_Description, Product_Finish, Unit_Price 

Therefore, NOT in 2nd Normal Form 



CGS 2545: Database Concepts  (Chapter 4)              Page 18                © Dr. Mark Llewellyn 

Converting A N2NF Relation Into A 2NF Relation 

• To convert a relation containing partial dependencies 

into a 2NF relation, the following steps are required: 

1. Create a new relation for each primary key attribute (or 

combinations of attributes) that is a determinant in a partial 

dependency.  That attribute is the primary key in the new 

relation. 

2. Move the non-key attributes that are dependent on this 

primary key attribute (or attributes) from the old relation 

into the new relation. 



CGS 2545: Database Concepts  (Chapter 4)              Page 19                © Dr. Mark Llewellyn 

Converting A N2NF Relation Into A 2NF Relation 

EXAMPLE 



CGS 2545: Database Concepts  (Chapter 4)              Page 20                © Dr. Mark Llewellyn 

Consequences of the Definition of 2NF 

• A 1NF relation will be in 2NF if any of the 
following conditions hold: 

1. The primary key consists of only one attribute.  By 
definition, there cannot be a partial dependency in such a 
relation. 

2. No non-key attributes exists in the relation (all of the 
attributes in the relation are part of the primary key).  By 
definition there are no functional dependencies (other than 
the trivial ones) in such a relation. 

3. Every non-key attribute is functionally dependent on the 
full set of primary key attributes. 



CGS 2545: Database Concepts  (Chapter 4)              Page 21                © Dr. Mark Llewellyn 

Definition of 3NF 

• A relation is in 3NF if it is in 2NF and no transitive 
dependencies exist. 

– A transitive dependency in a relation is a functional dependency 
between two (or more) non-key attributes. 

– PrimaryKey → A→ B. Order_ID → Customer_ID 

 

-and- 

          Customer_ID → Customer_Name 

          Customer_ID → Customer_Address 

 



CGS 2545: Database Concepts  (Chapter 4)              Page 22                © Dr. Mark Llewellyn 

Converting A N3NF Relation Into A 3NF Relation 

• To convert a relation containing transitive 
dependencies into a 3NF relation, the following 
steps are required: 

1. For each non-key attributed (or set of attributed) that is a 
determinant in the relation, create a new relation.  That 
attribute (or set of attributes) becomes the primary key in 
the new relation. 

2. Move all of the attributes that are functionally dependent on 
the attribute from the old relation into the new relation. 

3. Leave the attribute (which serves as the primary key in the 
new relation) in the old relation to serve as a foreign key 
that allows an association between the two relation. 



CGS 2545: Database Concepts  (Chapter 4)              Page 23                © Dr. Mark Llewellyn 

Converting A N3NF Relation Into A 3NF Relation 

EXAMPLE 



CGS 2545: Database Concepts  (Chapter 4)              Page 24                © Dr. Mark Llewellyn 

  
• Denormalization is the process of transforming normalized 

relations into non-normalized physical record specifications. 

• In a modern computer system, the cost per unit of storage 
(memory) has decreased drastically in recent years,  Thus, 
while it is still a consideration, the efficient use of storage 
space has become less important than in the past. 

• In a modern DBMS, efficient data processing dominates the 
design process.  In other words, speed not style takes 
precedence. 

• Efficient processing of data is in part dependent on how close 
related data are maintained in memory. 

Denormalization 



CGS 2545: Database Concepts  (Chapter 4)              Page 25                © Dr. Mark Llewellyn 

  
• As we’ve just seen, the normalization process tends to 

distribute the data into many tables. 

• It is often the case that all of the attributes that appear within a 
relation are not used together, and data from different relations 
are needed to be combined together to answer a query or 
produce a report. 

• Although normalized relations solve data maintenance 
anomalies and minimize redundancy (and hence reduce storage 
space requirements), if implemented as one for one physical 
records, will probably not yield efficient data processing. 

 

Denormalization 



CGS 2545: Database Concepts  (Chapter 4)              Page 26                © Dr. Mark Llewellyn 

  
• A fully normalized database generally contains a large number 

of relations.  For a frequently executed query that requires data 
from multiple, related tables, the DBMS can spend a 
considerable amount of time each time the query is executed in 
matching the related rows (a technique called joining that we’ll 
see a bit later) from each relation that is required to build the 
query result. 

• Since join operations can be quite time consuming, the 
processing performance differential between totally normalized 
and partially normalized (denormalized) databases can be quite 
dramatic. 

 

Denormalization 



CGS 2545: Database Concepts  (Chapter 4)              Page 27                © Dr. Mark Llewellyn 

  
• In general, denormalization may partition a relation into several 

physical records, may combine attributes from several relations 
together into one physical record, or a combination of both.   

• There are, in general, three common types of denormalization 
that occur: 

– Two entities with a 1:1 relationship between them. 

– A N:M relationship (associative entity) with non-key attributes. 

– Reference data. 

• We’ll look more closely at each of these types on the next few 
pages. 

 

Denormalization 



CGS 2545: Database Concepts  (Chapter 4)              Page 28                © Dr. Mark Llewellyn 

Denormalization Case: 1:1 Binary Relationship 

• Even in cases where one of the entities is an optional 
participant, if the matching entity exists most of the time, then 
it may be wise to combine these two relations into one record 
definition.  This would be especially true if the access 
frequency between the two entity types is high). 

• Consider the example shown on the next page.  The ERD 
shows student data with optional data from a standard 
scholarship application a student might complete. 

• In this case, one record could be formed with four fields from 
the Student and Application normalized relations. 

• Note that in this case the attributes from the optional entity 
must be allowed to have null values.  



CGS 2545: Database Concepts  (Chapter 4)              Page 29                © Dr. Mark Llewellyn 

Denormalization Case: 1:1 Binary Relationship 



CGS 2545: Database Concepts  (Chapter 4)              Page 30                © Dr. Mark Llewellyn 

Denormalization Case: N:M (Associative Entity) 

• In this case, rather than joining three files in order to extract data from 
the two basic entities in the relationship, it might be advisable to 
combine attributes from one of the entities into the record representing 
the N:M relationship and thus avoid one of the join operations. 

• This would be most advantageous if this joining occurs frequently. 

• The example on the next page illustrates this situation with price quotes 
for various items from different vendors.  In this situation, attributes 
from the Item and Price Quote relations might be combined into one 
record to prevent the three table join operation. 

• Note that this may create considerable duplication of data, since the Item 
attributes, such as Description, would repeat for each price quote.  This 
would require excessive updating if duplicated data changed.  Analysis 
of a composite usage map to study access frequencies and the number of 
occurrences of Price Quote per associated Vendor or Item would be 
essential to understand the consequences of such denormalization. 



CGS 2545: Database Concepts  (Chapter 4)              Page 31                © Dr. Mark Llewellyn 

Denormalization Case: N:M (Associative Entity) 

Extra table access 

is required 

Null Description would be possible 



CGS 2545: Database Concepts  (Chapter 4)              Page 32                © Dr. Mark Llewellyn 

Denormalization Case: Reference Data 

• Reference data exist in an entity on one side of a 1:M relationship, 
and this entity participates in no other relationships. 

• When this situation arises, you should seriously consider merging 
the two entities into one physical record definition when there are 
few instances of the entity on the many side for each entity 
instance on the one side. 

• The following page illustrates this situation, in which several 
Items have the same Storage Instructions and Storage Instructions 
relates only to Items.  In this case, the storage instructions could 
be stored in the Item record, 

• Note that in so doing, redundancy and the potential for extra data 
maintenance will increase. 



CGS 2545: Database Concepts  (Chapter 4)              Page 33                © Dr. Mark Llewellyn 

Denormalization Case: N:M (Associative Entity) 

Extra table access 

is required 

Data duplication 


